Removed Nim stuff

This commit is contained in:
Louis Burke 2024-01-04 09:44:58 -05:00
parent c1e7ecec44
commit 222cf580e0
10 changed files with 22 additions and 1688 deletions

22
Makefile Normal file
View file

@ -0,0 +1,22 @@
.PHONY: default
default: docs
DOCUMENTS=$(shell find doc/ -name '*.md')
HTMLDOCS=$(patsubst %.md,%.html,$(DOCUMENTS))
PDFDOCS=$(patsubst %.md,%.pdf,$(DOCUMENTS))
docs: $(HTMLDOCS) $(PDFDOCS)
%.html: %.md
multimarkdown -t html $^ -o $@
%.tex: %.md
multimarkdown -t latex $^ -o $@
%.pdf: %.tex doc/arctic-leader.tex doc/arctic-begin.tex doc/arctic-footer.tex
cd $$(dirname $<) && xelatex -interaction=batchmode $<
print-%:
@echo '$*=$($*)'

View file

@ -1,26 +0,0 @@
# Package
version = "0.1.0"
author = "Louis Burke"
description = "ARCTIC in Nim"
license = "Apache-2.0"
srcDir = "src"
installExt = @["nim"]
bin = @["arctic", "arctic/load"]
namedBin = {"arctic": "arctic", "arctic/load": "acdump"}.toTable()
# Dependencies
requires "nim >= 2.0.0"
requires "bio"
requires "itertools"
before build:
exec "./generate_handle_syscalls.sh"
task docs, "docs":
exec "nim doc --project --index:on --outdir:src/htmldocs src/arctic.nim"
exec "multimarkdown -t html doc/documentation.md -o doc/documentation.html"
exec "multimarkdown -t latex doc/documentation.md -o doc/documentation.tex"
exec "sed -i 's/^\\[/{\\[}/' doc/documentation.tex"
exec "cd doc && xelatex -interaction=batchmode documentation.tex"

View file

@ -1,122 +0,0 @@
#include "arctic.h"
#include <string.h>
const char ARCTIC_CODE_PAGE[97] =
"0123456789ABCDEF"
"GHIJKLMNOPQRSTUV"
"WXYZabcdefghijkl"
"mnopqrstuvwxyz_."
"+-*/%\\|$@<{=}>,;"
"&^![]?~:()'\"` #\n"
;
/* ops with an immediate argument */
#define FOR_IMMEDIATE_OPS(X) \
X('0') X('G') X('H') X('L') X('M') X('P') X('Q') X('d') X('o') X('u') \
X('@') X('<') X('{') X('=') X('}') X('>') X(',') X(';') X('[') X(']')
#define FOR_PLAIN_OPS(X) \
X('1') X('2') X('3') X('4') X('5') X('6') X('7') X('8') X('9') X('A') \
X('B') X('C') X('D') X('E') X('F') X('I') X('J') X('K') X('N') X('O') \
X('R') X('S') X('U') X('V') X('W') X('X') X('Y') X('Z') X('a') X('b') \
X('c') X('e') X('f') X('g') X('h') X('i') X('j') X('k') X('l') X('m') \
X('n') X('p') X('q') X('r') X('s') X('t') X('v') X('w') X('x') X('y') \
X('z') X('_') X('.') X('+') X('-') X('*') X('/') X('%') X('\\') X('|') \
X('&') X('^') X('!') X('?') X('(') X(')') X('`')
#define CASE(X, ...) case X:
#define chrncat(str, chr, n, fail) do { \
char *last; \
for (last = str; *last; last++) { \
if (last >= str + n) { \
fail; \
} \
} \
*last++ = chr; \
*last = 0; \
} while (0)
enum ArcticErrorCode arctic_scan(struct ArcticScanner *scanner, char next) {
switch (scanner->buf[0]) {
case 0: /* initial state */
switch (next) {
case ' ':
return ARCTIC_OK;
FOR_IMMEDIATE_OPS(CASE)
case '#':
case ':':
case '\"':
case '\'':
scanner->buf[0] = next;
scanner->buf[1] = 0;
return ARCTIC_OK;
FOR_PLAIN_OPS(CASE)
case '\n':
scanner->op_callback(next, 0, scanner->data);
return ARCTIC_OK;
default:
return ARCTIC_UNEXPECTED_CHAR;
}
case '#': /* comment */
if (next == '\n')
scanner->buf[0] = 0;
return ARCTIC_OK;
case '"': /* section switch */
if (next == '"') {
scanner->section_callback(scanner->buf + 1, scanner->data);
scanner->buf[0] = 0;
} else {
chrncat(
scanner->buf, next, ARCTIC_BUFSIZE,
return ARCTIC_BUFFER_FULL
);
}
return ARCTIC_OK;
case ':': /* label name */
if (next == ' ' || next == '\n' || next == '#') {
scanner->label_callback(scanner->buf + 1, scanner->data);
scanner->buf[0] = (next == '#' ? '#' : 0);
} else {
chrncat(
scanner->buf, next, ARCTIC_BUFSIZE,
return ARCTIC_BUFFER_FULL
);
}
return ARCTIC_OK;
case '\'': /* data injection */
if (next == '\'') {
scanner->data_callback(scanner->buf + 1, scanner->data);
scanner->buf[0] = 0;
} else {
chrncat(
scanner->buf, next, ARCTIC_BUFSIZE,
return ARCTIC_BUFFER_FULL
);
}
return ARCTIC_OK;
FOR_IMMEDIATE_OPS(CASE) /* immediate ops */
if (next == ' ' || next == '\n' || next == '#') {
scanner->op_callback(scanner->buf[0], scanner->buf + 1, scanner->data);
scanner->buf[0] = (next == '#' ? '#' : 0);
} else {
chrncat(
scanner->buf, next, ARCTIC_BUFSIZE,
return ARCTIC_BUFFER_FULL
);
}
return ARCTIC_OK;
default:
return ARCTIC_INVALID_STATE;
}
}

View file

@ -1,59 +0,0 @@
/* ARCTIC library header. To be used as a utility by interpreters and compilers.
* Author: Louis A. Burke
*
* Does not require dynamic memory or a c standard library, so as to be easy to
* use on e.g. microcontrollers.
*/
#ifndef ARCTIC_H
#define ARCTIC_H
#ifndef ARCTIC_BUFSIZE
#define ARCTIC_BUFSIZE 1024
#endif /* ARCTIC_BUFSIZE */
/* encoding/decoding */
extern const char ARCTIC_CODE_PAGE[97];
/* scanning */
enum ArcticImmediateKind {
ARCTIC_NONE, ARCTIC_NAME, ARCTIC_INTEGER, ARCTIC_NUMBER
};
struct ArcticScanner {
void *data; /* callback data pointer */
void (*section_callback)(
const char *name, /* the name of the section */
void *data /* callback data */
);
void (*label_callback)(
const char *id, /* the identifier itself */
void *data /* callback data */
);
void (*op_callback)(
char opcode, /* the character code of the operation */
const char *im, /* the immediate value, if it exists */
void *data /* callback data */
);
void (*data_callback)(
const char *init, /* initialization code */
void *data /* callback data */
);
char buf[ARCTIC_BUFSIZE];
};
enum ArcticErrorCode {
ARCTIC_OK = 0,
ARCTIC_UNEXPECTED_CHAR, /* not necessarily an error */
ARCTIC_INVALID_STATE,
ARCTIC_BUFFER_FULL
};
/* returns 0 on success, or an error code */
enum ArcticErrorCode arctic_scan(struct ArcticScanner *scanner, char next);
#endif /* ARCTIC_H */

View file

@ -1,78 +0,0 @@
import std/[critbits, enumerate, macros, os, tables]
import bio
import arctic/[load, memory, step, types]
var DefaultBuiltins* {.compileTime.}: CritBitTree[ArcticBuiltin]
macro arctic_builtin(builtin: typed): untyped =
let nameid = builtin.name
let namestr = newLit(nameid.strVal)
result = quote do:
`builtin`
DefaultBuiltins[`namestr`] = `nameid`
macro arctic_builtin_secret(builtin: typed): untyped =
let nameid = builtin.name
let namestr = newLit(nameid.strVal & "_")
result = quote do:
`builtin`
DefaultBuiltins[`namestr`] = `nameid`
proc putstrln(state: var ArcticState): ArcticStepResult {.arctic_builtin.} =
var p = state.stack.pop.p
while state.memory[p] != 0:
stdout.write(state.memory[p].char)
inc p
stdout.write('\n')
return CONTINUE
proc debugdump(state: var ArcticState): ArcticStepResult {.arctic_builtin_secret.} =
echo state
return CONTINUE
proc parseCmdLine(): (File, seq[string]) =
var argv = commandLineParams()
if len(argv) > 0:
let fname = argv[0]
argv.delete(0)
return (open(fname), argv)
else:
return (stdin, @[])
when isMainModule:
let (ifile, args) = parseCmdLine()
var state = ifile.readAll.load
let builtins = DefaultBuiltins
var argv: seq[int] = @[]
for arg in args:
let a = state.memory.allocate(arg.len + 1)
for i in 0 .. arg.len:
state.memory[a + i] = arg[i].uint8
state.memory[a + arg.len] = 0
argv.add a
let x = state.memory.allocate((args.len + 1) * 8)
for (i, a) in enumerate(argv):
state.memory.write(x + 8 * i, cast[uint64](a.int64).serialize(littleEndian))
state.memory.write(x + 8 * args.len, 0.uint64.serialize(littleEndian))
state.stack.add ArcticType(i: x) # argv
state.stack.add ArcticType(i: args.len) # argc
state.stack.add ArcticType(i: -1) # return address: special "exit"
while true:
case state.step(builtins):
of CONTINUE:
continue
of BREAKPOINT:
echo state
of EXIT:
break
of ERROR:
break

View file

@ -1,3 +0,0 @@
const
ImmediateOps*: set[char] = {'0', 'E', 'F', 'G', 'H', 'L', 'M', 'P', 'Q', 'd', 'o', 'u', '$', '@', '<', '{', '=', '}', '>', ',', ';', '[', ']', '`'}
PlainOps*: set[char] = { '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'I', 'J', 'K', 'N', 'O', 'R', 'S', 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'p', 'q', 'r', 's', 't', 'v', 'w', 'x', 'y', 'z', '_', '.', '+', '-', '*', '/', '%', '\\', '|', '&', '^', '!', '?', '(', ')' }

View file

@ -1,202 +0,0 @@
import std/[critbits, re, strutils, strmisc]
import bio
import itertools
import constants
import memory
import types
proc tovar(code: char): ArcticVariableIndex =
case code.toLowerAscii:
of 'a': VARIABLE_A
of 'b': VARIABLE_B
of 'c': VARIABLE_C
of 'i': VARIABLE_I
of 'n': VARIABLE_N
of 'x': VARIABLE_X
of 'y': VARIABLE_Y
of 'z': VARIABLE_Z
else: raise new ValueError
proc parse_immediate(imm: string, section: string): ArcticImmediate =
if imm.match(re"^\d+$"):
return ArcticImmediate(kind: INTEGER, i: imm.parseInt)
elif imm.match(re"^[AaBbCcIiNnXxYyZz]$"):
return ArcticImmediate(kind: VARIABLE, v: imm[0].tovar)
elif imm.len > 0 and imm[0] in "0123456789.":
return ArcticImmediate(kind: NUMBER, n: imm.parseFloat)
else:
if imm.len > 0 and imm[0] == '_':
return ArcticImmediate(kind: SYMBOL, s: section & " " & imm)
else:
return ArcticImmediate(kind: SYMBOL, s: imm)
func grabnum(data: string): (string, string) =
## Returns the numeric literal at the start of data, then the rest of data
var i = 0
while i < data.len and data[i] in "0123456789.":
result[0] &= data[i]
i += 1
result[1] = data[i..^1]
proc parse_data(data: string): seq[uint8] =
if data.len == 0:
return
template insertInt(itype, utype, endianness) =
let (text, rest) = data[1..^1].grabnum
if text[0] == '-':
let val: itype = itype(-text[1..^1].parseBiggestInt)
result.add cast[utype](val).serialize(endianness)
else:
let val: utype = utype(text.parseBiggestUInt)
result.add val.serialize(endianness)
result.add parse_data(rest)
case data[0]:
of 'i': insertInt(int64, uint64, littleEndian)
of 'I': insertInt(int64, uint64, bigEndian)
of 'w': insertInt(int32, uint32, littleEndian)
of 'W': insertInt(int32, uint32, bigEndian)
of 's': insertInt(int16, uint16, littleEndian)
of 'S': insertInt(int16, uint16, bigEndian)
of 'b', 'B': # bytes don't have an endianness
let (text, rest) = data[1..^1].grabnum
if text[0] == '-':
let val: int8 = int8(-text[1..^1].parseBiggestInt)
result.add cast[uint8](val)
else:
let val: uint8 = uint8(text.parseBiggestUInt)
result.add val
result.add parse_data(rest)
of 'f':
let (text, rest) = data[1..^1].grabnum
result.add cast[uint64](text.parseFloat).serialize(littleEndian)
result.add parse_data(rest)
of 'F':
let (text, rest) = data[1..^1].grabnum
result.add cast[uint64](text.parseFloat).serialize(bigEndian)
result.add parse_data(rest)
of 'x': # hexadecimal byte constant
let (hex, _, rest) = data[1..^1].partition("x")
for pair in hex.chunked(2):
result.add uint8(parseHexInt(pair.join))
result.add parse_data(rest)
of '"': # utf-8 string constant with escapes
let strlen = data.matchLen(re"^""([^""]|\\"")*""")
assert strlen >= 0
for c in unescape(data[1..strlen - 2], prefix="", suffix=""):
result.add c.uint8
result.add parse_data(data[strlen..^1])
else:
result.add parse_data(data[1..^1])
func iscode(secname: string): bool =
if secname.len == 0:
return true
return secname[0] in "cC"
func isbigendian(secname: string): bool =
if secname.len == 0:
return false
return secname[0] in "C"
func raw_op(code: char): ArcticOperation =
result.code = code
result.immediate = ArcticImmediate(kind: PLAIN)
func load*(code: string): ArcticState =
var
section: string = ""
token: string = ""
result.pc = 1
for next in code:
if token.len == 0: # initial state
case next:
of ImmediateOps, '#', ':', '\"', '\'':
token &= next
of PlainOps, '\n':
if section.iscode:
result.code.add(section, raw_op(next))
else:
discard
else:
case token[0]:
of '#': # comment
if next == '\n':
token = ""
if section.iscode:
result.code.add(section, raw_op(next))
of '"': # section switch
if next == '"' and token[^1] != '\\':
section = token[1..^1]
token = ""
else:
token.add next
of ':': # label name
if next == ' ' or next == '\n':
let idx = if token[1] == '_': section & " " & token[1..^1] else: token[1..^1]
if section.iscode:
result.symbols[idx] = result.code.current(section)
else:
result.memory.register(section)
result.symbols[idx] = result.memory.current(section)
token = ""
else:
token.add next
of '\'': # data injection
if next == '\'':
var
quoted = false
escaped = false
for c in token:
if c == '"':
if not escaped:
quoted = not quoted
escaped = false
elif c == '\\':
escaped = true
else:
escaped = false
if quoted or escaped:
token.add next
else:
if not section.iscode:
result.memory.add(section, parse_data(token[1..^1]))
token = ""
else:
token.add next
of ImmediateOps:
if next in " \n":
if section.iscode:
result.code.add(section, ArcticOperation(
code: token[0],
immediate: parse_immediate(token[1..^1], section),
bigendian: isbigendian(section)))
token = ""
else:
token.add next
else:
discard
when isMainModule:
let state = stdin.readAll.load
echo state

View file

@ -1,336 +0,0 @@
import std/[critbits, math, tables]
type
Memory*[T] = object
## Memory holds a set of sections and maps addresses in those sections
## to the range (0, int.high) via a low discrepancy sequence (in this
## case, the van der corput sequence)
chunks: seq[seq[T]]
sects: CritBitTree[int] # which chunk is the section
# TODO: keep track of lengths and "skip" vdc indices that would overlap
# (only an issue where e.g. section 0 is huge and there are lots
# of sections)
smlmem: Table[int, seq[T]] # index -> buffer
midmem: Table[int, seq[T]] # index -> buffer
bigmem: Table[int, seq[T]] # index -> buffer
hugmem: Table[int, seq[T]] # index -> buffer
# dynamic addresses are:
# (1 shl 18)-element blocks x (1 shl 42) starting from (int.high shr 1)
# (1 shl 26)-element blocks x (1 shl 34) starting from (int.high shr 1) + (1 shl 60)
# (1 shl 34)-element blocks x (1 shl 26) starting from (int.high shr 1) + 2 * (1 shl 60)
# (1 shl 42)-element blocks x (1 shl 18) starting from (int.high shr 1) + 3 * (1 shl 60)
const
HUG_BLOCK_SIZE = 1 shl 42
BIG_BLOCK_SIZE = 1 shl 34
MID_BLOCK_SIZE = 1 shl 26
SML_BLOCK_SIZE = 1 shl 18
HUG_BLOCK_COUNT = 1 shl 18
BIG_BLOCK_COUNT = 1 shl 26
MID_BLOCK_COUNT = 1 shl 34
SML_BLOCK_COUNT = 1 shl 42
SML_BLOCK_START = int.high shr 1
MID_BLOCK_START = SML_BLOCK_START + (1 shl 60)
BIG_BLOCK_START = MID_BLOCK_START + (1 shl 60)
HUG_BLOCK_START = BIG_BLOCK_START + (1 shl 60)
proc van_der_corput(n: int): int =
var
q = 1 # 0 is reserved for null
i = n
b = int.high shr 2 # int.high/2 .. int.high is reserved for dynmem
while i > 0:
q += (i and 1) * b
i = i shr 1
b = b shr 1
return q
proc register*[T](memory: var Memory[T], section: string) =
## Registers a section as existing in this memory space, without adding any
## data to it
if not (section in memory.sects):
memory.sects[section] = memory.chunks.len
memory.chunks.add @[]
proc add*[T](memory: var Memory[T], section: string, value: T) =
## Adds value to the end of memory in section.
if not (section in memory.sects):
memory.sects[section] = memory.chunks.len
memory.chunks.add @[]
memory.chunks[memory.sects[section]].add value
proc add*[T](memory: var Memory[T], section: string, values: openarray[T]) =
## Adds value to the end of memory in section.
if not (section in memory.sects):
memory.sects[section] = memory.chunks.len
memory.chunks.add @[]
memory.chunks[memory.sects[section]].add values
proc address*[T](memory: Memory[T], section: string, offset: int): int =
## Computes the "real" address of a given section and offset
return van_der_corput(memory.sects[section]) + offset
proc current*[T](memory: Memory[T], section: string): int =
## Computes the "real" address of the "next" element in the section
let i = memory.sects[section]
return van_der_corput(i) + len(memory.chunks[i])
proc addrinfo[T](memory: Memory[T], address: int): (int, int) =
## Calculates which section index an address points to and the offset in it
var
index = 0
start = van_der_corput(index)
for i in 1 .. memory.chunks.len:
let corput = van_der_corput(i)
if (corput < address) and (corput > start):
index = i
start = corput
return (index, address - start)
proc contains*[T](memory: Memory[T], address: int): bool =
## Checks if the given address is a valid allocated address
if address < SML_BLOCK_START:
let (idx, off) = memory.addrinfo(address)
return memory.chunks[idx].len >= off
elif address < MID_BLOCK_START:
let (blkid, offset) = divmod(address - SML_BLOCK_START, SML_BLOCK_SIZE)
return memory.smlmem[blkid].len >= offset
elif address < BIG_BLOCK_START:
let (blkid, offset) = divmod(address - MID_BLOCK_START, MID_BLOCK_SIZE)
return memory.midmem[blkid].len >= offset
elif address < HUG_BLOCK_START:
let (blkid, offset) = divmod(address - BIG_BLOCK_START, BIG_BLOCK_SIZE)
return memory.bigmem[blkid].len >= offset
else:
let (blkid, offset) = divmod(address - HUG_BLOCK_START, HUG_BLOCK_SIZE)
return memory.hugmem[blkid].len >= offset
proc raw_address*[T](memory: var Memory[T], address: int): ptr T =
## Returns the "raw" address of a given section and offset
if address < SML_BLOCK_START:
let (idx, off) = memory.addrinfo(address)
return addr memory.chunks[idx][off]
elif address < MID_BLOCK_START:
let (blkid, offset) = divmod(address - SML_BLOCK_START, SML_BLOCK_SIZE)
return addr memory.smlmem[blkid][offset]
elif address < BIG_BLOCK_START:
let (blkid, offset) = divmod(address - MID_BLOCK_START, MID_BLOCK_SIZE)
return addr memory.midmem[blkid][offset]
elif address < HUG_BLOCK_START:
let (blkid, offset) = divmod(address - BIG_BLOCK_START, BIG_BLOCK_SIZE)
return addr memory.bigmem[blkid][offset]
else:
let (blkid, offset) = divmod(address - HUG_BLOCK_START, HUG_BLOCK_SIZE)
return addr memory.hugmem[blkid][offset]
proc `[]`*[T](memory: Memory[T], address: int): T =
## Accesses the underlying memory item for the given address, failing if it
## does not exist
if address < SML_BLOCK_START:
let (idx, off) = memory.addrinfo(address)
return memory.chunks[idx][off]
elif address < MID_BLOCK_START:
let (blkid, offset) = divmod(address - SML_BLOCK_START, SML_BLOCK_SIZE)
return memory.smlmem[blkid][offset]
elif address < BIG_BLOCK_START:
let (blkid, offset) = divmod(address - MID_BLOCK_START, MID_BLOCK_SIZE)
return memory.midmem[blkid][offset]
elif address < HUG_BLOCK_START:
let (blkid, offset) = divmod(address - BIG_BLOCK_START, BIG_BLOCK_SIZE)
return memory.bigmem[blkid][offset]
else:
let (blkid, offset) = divmod(address - HUG_BLOCK_START, HUG_BLOCK_SIZE)
return memory.hugmem[blkid][offset]
proc `[]`*[T](memory: var Memory[T], address: int): var T =
## Accesses the underlying memory item for the given address, failing if it
## does not exist
if address < SML_BLOCK_START:
let (idx, off) = memory.addrinfo(address)
return memory.chunks[idx][off]
elif address < MID_BLOCK_START:
let (blkid, offset) = divmod(address - SML_BLOCK_START, SML_BLOCK_SIZE)
return memory.smlmem[blkid][offset]
elif address < BIG_BLOCK_START:
let (blkid, offset) = divmod(address - MID_BLOCK_START, MID_BLOCK_SIZE)
return memory.midmem[blkid][offset]
elif address < HUG_BLOCK_START:
let (blkid, offset) = divmod(address - BIG_BLOCK_START, BIG_BLOCK_SIZE)
return memory.bigmem[blkid][offset]
else:
let (blkid, offset) = divmod(address - HUG_BLOCK_START, HUG_BLOCK_SIZE)
return memory.hugmem[blkid][offset]
proc `[]=`*[T](memory: var Memory[T], address: int, value: T) =
## Writes to the underlying memory item for a given address, failing if it
## does not exist
if address < SML_BLOCK_START:
let (idx, off) = memory.addrinfo(address)
memory.chunks[idx][off] = value
elif address < MID_BLOCK_START:
let (blkid, offset) = divmod(address - SML_BLOCK_START, SML_BLOCK_SIZE)
memory.smlmem[blkid][offset] = value
elif address < BIG_BLOCK_START:
let (blkid, offset) = divmod(address - MID_BLOCK_START, MID_BLOCK_SIZE)
memory.midmem[blkid][offset] = value
elif address < HUG_BLOCK_START:
let (blkid, offset) = divmod(address - BIG_BLOCK_START, BIG_BLOCK_SIZE)
memory.bigmem[blkid][offset] = value
else:
let (blkid, offset) = divmod(address - HUG_BLOCK_START, HUG_BLOCK_SIZE)
memory.hugmem[blkid][offset] = value
proc write*[T](memory: var Memory[T], address: int, values: openArray[T]) =
## Writes to the underlying memory item for a given address, failing if it
## does not exist
var a = address
for i in values:
memory[a] = i
inc a
proc section*[T](memory: Memory[T], address: int): string =
## Calculates which section a given address points to (warning: slow)
let (idx, off) = memory.addrinfo(address)
for (section, index) in memory.sects.pairs:
if index == idx:
return section
return ""
iterator sections*[T](memory: Memory[T]): string =
for section in memory.sects.keys:
yield section
proc data*[T](memory: Memory[T], section: string): seq[T] =
return memory.chunks[memory.sects[section]]
proc allocate*[T](memory: var Memory[T], count: int): int =
## Allocates a block of count values that can be addressed starting from the
## returned value
if count < SML_BLOCK_SIZE:
var i = 0
while i in memory.smlmem:
inc i
if i > SML_BLOCK_COUNT:
raise new ResourceExhaustedError
memory.smlmem[i] = newSeq[T](count)
return SML_BLOCK_START + SML_BLOCK_SIZE * i
elif count < MID_BLOCK_SIZE:
var i = 0
while i in memory.smlmem:
inc i
if i > MID_BLOCK_COUNT:
raise new ResourceExhaustedError
memory.smlmem[i] = newSeq[T](count)
return MID_BLOCK_START + MID_BLOCK_SIZE * i
elif count < BIG_BLOCK_SIZE:
var i: int = 0
while i in memory.smlmem:
inc i
if i > BIG_BLOCK_COUNT:
raise new ResourceExhaustedError
memory.smlmem[i] = newSeq[T](count)
return BIG_BLOCK_START + BIG_BLOCK_SIZE * i
else:
var i = 0
while i in memory.smlmem:
inc i
if i > HUG_BLOCK_COUNT:
raise new ResourceExhaustedError
memory.smlmem[i] = newSeq[T](count)
return HUG_BLOCK_START + HUG_BLOCK_SIZE * i
proc deallocate*[T](memory: var Memory[T], address: int) =
## Deallocates the block containing address
if address < SML_BLOCK_START:
discard # Can't deallocate static memory
elif address < MID_BLOCK_START:
let blkid = (address - SML_BLOCK_START) div SML_BLOCK_SIZE
memory.smlmem[blkid].setLen(0)
memory.smlmem.del(blkid)
elif address < BIG_BLOCK_START:
let blkid = (address - MID_BLOCK_START) div MID_BLOCK_SIZE
memory.midmem[blkid].setLen(0)
memory.midmem.del(blkid)
elif address < HUG_BLOCK_START:
let blkid = (address - BIG_BLOCK_START) div BIG_BLOCK_SIZE
memory.bigmem[blkid].setLen(0)
memory.bigmem.del(blkid)
else:
let blkid = (address - HUG_BLOCK_START) div HUG_BLOCK_SIZE
memory.hugmem[blkid].setLen(0)
memory.hugmem.del(blkid)
proc reallocate*[T](memory: var Memory[T], address: int, count: int): int =
## Reallocates the block containing address to store up to count items
var theseq: seq[T]
if address < SML_BLOCK_START:
return address # Can't reallocate static memory
elif address < MID_BLOCK_START:
let blkid = (address - SML_BLOCK_START) div SML_BLOCK_SIZE
if count <= SML_BLOCK_SIZE:
memory.smlmem[blkid].setLen(count)
return address
assert memory.smlmem.pop(blkid, theseq)
elif address < BIG_BLOCK_START:
let blkid = (address - MID_BLOCK_START) div MID_BLOCK_SIZE
if count <= MID_BLOCK_SIZE:
memory.midmem[blkid].setLen(count)
return address
assert memory.midmem.pop(blkid, theseq)
elif address < HUG_BLOCK_START:
let blkid = (address - BIG_BLOCK_START) div BIG_BLOCK_SIZE
if count <= BIG_BLOCK_SIZE:
memory.bigmem[blkid].setLen(count)
return address
assert memory.bigmem.pop(blkid, theseq)
else:
let blkid = (address - HUG_BLOCK_START) div HUG_BLOCK_SIZE
if count <= HUG_BLOCK_SIZE:
memory.hugmem[blkid].setLen(count)
return address
assert memory.hugmem.pop(blkid, theseq)
theseq.setLen(count)
if count < SML_BLOCK_SIZE:
var i = 0
while i in memory.smlmem:
inc i
if i > SML_BLOCK_COUNT:
raise new ResourceExhaustedError
memory.smlmem[i] = theseq
return SML_BLOCK_START + SML_BLOCK_SIZE * i
elif count < MID_BLOCK_SIZE:
var i = 0
while i in memory.smlmem:
inc i
if i > MID_BLOCK_COUNT:
raise new ResourceExhaustedError
memory.smlmem[i] = theseq
return MID_BLOCK_START + MID_BLOCK_SIZE * i
elif count < BIG_BLOCK_SIZE:
var i = 0
while i in memory.smlmem:
inc i
if i > BIG_BLOCK_COUNT:
raise new ResourceExhaustedError
memory.smlmem[i] = theseq
return BIG_BLOCK_START + BIG_BLOCK_SIZE * i
else:
var i = 0
while i in memory.smlmem:
inc i
if i > HUG_BLOCK_COUNT:
raise new ResourceExhaustedError
memory.smlmem[i] = theseq
return HUG_BLOCK_START + HUG_BLOCK_SIZE * i

View file

@ -1,746 +0,0 @@
import std/[bitops, critbits, math]
import memory
import types
import handle_syscalls
proc branch(state: var ArcticState, count: int) =
var n = 0
if count > 0:
while n < count:
state.pc.inc
if state.code[state.pc].code == '\n':
n.inc
else:
while n > count:
state.pc.dec
if state.code[state.pc].code == '\n':
n.dec
proc step*(state: var ArcticState, builtins: CritBitTree[ArcticBuiltin]): ArcticStepResult =
if not (state.pc in state.code):
return EXIT
if state.pc == 0:
return EXIT
let op = state.code[state.pc]
state.pc.inc
case op.code:
# Memory Ops -----------------------------------------------------------
of '1': # LDAB
let p = state.stack.pop.p
state.stack.add ArcticType(i: state.memory[p].int64)
of '2': # LDAS
let
p = state.stack.pop.p
a = state.memory[p].int64
b = state.memory[p+1].int64
if op.bigendian:
state.stack.add ArcticType(i: a or b shl 8)
else:
state.stack.add ArcticType(i: b or a shl 8)
of '3': # LDAI
let
p = state.stack.pop.p
a = state.memory[p].int64
b = state.memory[p+1].int64
c = state.memory[p+2].int64
d = state.memory[p+3].int64
if op.bigendian:
state.stack.add ArcticType(i: d or c shl 8 or b shl 16 or a shl 24)
else:
state.stack.add ArcticType(i: a or b shl 8 or c shl 16 or d shl 24)
of '4': # LDAW
let
p = state.stack.pop.p
a = state.memory[p].int64
b = state.memory[p+1].int64
c = state.memory[p+2].int64
d = state.memory[p+3].int64
e = state.memory[p+4].int64
f = state.memory[p+5].int64
g = state.memory[p+6].int64
h = state.memory[p+7].int64
if op.bigendian:
state.stack.add ArcticType(i: h or g shl 8 or f shl 16 or e shl 24 or d shl 32 or c shl 40 or b shl 48 or a shl 56)
else:
state.stack.add ArcticType(i: a or b shl 8 or c shl 16 or d shl 24 or e shl 32 or f shl 40 or g shl 48 or h shl 56)
of 'o': # LDOB
assert op.immediate.kind == INTEGER
let p = state.stack.pop.p
state.stack.add ArcticType(i: state.memory[p+op.immediate.i].int64)
of 'H': # LDOS
assert op.immediate.kind == INTEGER
let
p = state.stack.pop.p + op.immediate.i
a = state.memory[p].int64
b = state.memory[p+1].int64
if op.bigendian:
state.stack.add ArcticType(i: a or b shl 8)
else:
state.stack.add ArcticType(i: b or a shl 8)
of 'G': # LDOI
let
p = state.stack.pop.p + op.immediate.i
a = state.memory[p].int64
b = state.memory[p+1].int64
c = state.memory[p+2].int64
d = state.memory[p+3].int64
if op.bigendian:
state.stack.add ArcticType(i: d or c shl 8 or b shl 16 or a shl 24)
else:
state.stack.add ArcticType(i: a or b shl 8 or c shl 16 or d shl 24)
of 'Q': # LDOW
let
p = state.stack.pop.p
a = state.memory[p].int64
b = state.memory[p+1].int64
c = state.memory[p+2].int64
d = state.memory[p+3].int64
e = state.memory[p+4].int64
f = state.memory[p+5].int64
g = state.memory[p+6].int64
h = state.memory[p+7].int64
if op.bigendian:
state.stack.add ArcticType(i: h or g shl 8 or f shl 16 or e shl 24 or d shl 32 or c shl 40 or b shl 48 or a shl 56)
else:
state.stack.add ArcticType(i: a or b shl 8 or c shl 16 or d shl 24 or e shl 32 or f shl 40 or g shl 48 or h shl 56)
of '5': # STAB
let
x = cast[uint8](state.stack.pop.b)
p = state.stack.pop.p
state.memory[p] = x
of '6': # STAS
let
x = cast[uint16](state.stack.pop.s)
p = state.stack.pop.p
if op.bigendian:
state.memory[p] = uint8(x and 0xFF)
state.memory[p+1] = uint8(x shr 8)
else:
state.memory[p] = uint8(x shr 8)
state.memory[p+1] = uint8(x and 0xFF)
of '7': # STAI
let
x = cast[uint32](state.stack.pop.i)
p = state.stack.pop.p
if op.bigendian:
state.memory[p] = uint8(x and 0xFF)
state.memory[p+1] = uint8((x shr 8) and 0xFF)
state.memory[p+2] = uint8((x shr 16) and 0xFF)
state.memory[p+3] = uint8((x shr 24) and 0xFF)
else:
state.memory[p] = uint8((x shr 24) and 0xFF)
state.memory[p+1] = uint8((x shr 16) and 0xFF)
state.memory[p+2] = uint8((x shr 8) and 0xFF)
state.memory[p+3] = uint8(x and 0xFF)
of '8': # STAW
let
x = cast[uint64](state.stack.pop.i)
p = state.stack.pop.p
if op.bigendian:
state.memory[p] = uint8(x and 0xFF)
state.memory[p+1] = uint8((x shr 8) and 0xFF)
state.memory[p+2] = uint8((x shr 16) and 0xFF)
state.memory[p+3] = uint8((x shr 24) and 0xFF)
state.memory[p+4] = uint8((x shr 32) and 0xFF)
state.memory[p+5] = uint8((x shr 40) and 0xFF)
state.memory[p+6] = uint8((x shr 48) and 0xFF)
state.memory[p+7] = uint8((x shr 56) and 0xFF)
else:
state.memory[p] = uint8((x shr 56) and 0xFF)
state.memory[p+1] = uint8((x shr 48) and 0xFF)
state.memory[p+2] = uint8((x shr 40) and 0xFF)
state.memory[p+3] = uint8((x shr 32) and 0xFF)
state.memory[p+4] = uint8((x shr 24) and 0xFF)
state.memory[p+5] = uint8((x shr 16) and 0xFF)
state.memory[p+6] = uint8((x shr 8) and 0xFF)
state.memory[p+7] = uint8(x and 0xFF)
of 'D': # MCLR
let
x = state.stack.pop.i
p = state.stack.pop.p
for i in 0 .. x:
state.memory[p+i] = 0
of 'd': # MSET
assert op.immediate.kind == INTEGER
let
x = state.stack.pop.i
p = state.stack.pop.p
b = op.immediate.i.uint8
for i in 0 .. x:
state.memory[p+i] = b
of 'K': # MCPY
let
x = state.stack.pop.i
q = state.stack.pop.p
p = state.stack.pop.p
for i in 0 .. x:
state.memory[q+i] = state.memory[p+i]
of 'J': # MOFF
let
x = state.stack.pop.i
p = state.stack.pop.p
state.stack.add ArcticType(p: p + x)
of 'M': # MALL
assert op.immediate.kind == INTEGER
let
top = state.stack.pop
n = op.immediate.i
if n == 0:
if top.i != 0:
state.memory.deallocate(top.p)
state.stack.add ArcticType(i: 0)
elif n > 0:
if top.i == 0:
state.stack.add ArcticType(p: state.memory.allocate(n))
else:
state.stack.add ArcticType(p: state.memory.reallocate(top.p, n))
else:
discard # realloc negative is a nop
of 'R': # REAL
let
top = state.stack.pop
x = state.stack.pop.i
if x == 0:
if top.i != 0:
state.memory.deallocate(top.p)
state.stack.add ArcticType(i: 0)
elif x > 0:
if top.i == 0:
state.stack.add ArcticType(p: state.memory.allocate(x))
else:
state.stack.add ArcticType(p: state.memory.reallocate(top.p, x))
else:
discard # realloc negative is a nop
of '9': # CASS
# TODO: Actually CAS? need to use Atomic[T] for that...
# implementation would probably require an "atomic" memory
# section
let
y = state.stack.pop.i
x = state.stack.pop.i
p = state.stack.pop.p
a = state.memory[p].int64
b = state.memory[p+1].int64
c = state.memory[p+2].int64
d = state.memory[p+3].int64
e = state.memory[p+4].int64
f = state.memory[p+5].int64
g = state.memory[p+6].int64
h = state.memory[p+7].int64
var old: int64
if op.bigendian:
old = h or g shl 8 or f shl 16 or e shl 24 or d shl 32 or c shl 40 or b shl 48 or a shl 56
else:
old = a or b shl 8 or c shl 16 or d shl 24 or e shl 32 or f shl 40 or g shl 48 or h shl 56
if x == old:
state.stack.add ArcticType(i: 1)
if op.bigendian:
state.memory[p] = uint8(y and 0xFF)
state.memory[p+1] = uint8((y shr 8) and 0xFF)
state.memory[p+2] = uint8((y shr 16) and 0xFF)
state.memory[p+3] = uint8((y shr 24) and 0xFF)
state.memory[p+4] = uint8((y shr 32) and 0xFF)
state.memory[p+5] = uint8((y shr 40) and 0xFF)
state.memory[p+6] = uint8((y shr 48) and 0xFF)
state.memory[p+7] = uint8((y shr 56) and 0xFF)
else:
state.memory[p] = uint8((y shr 56) and 0xFF)
state.memory[p+1] = uint8((y shr 48) and 0xFF)
state.memory[p+2] = uint8((y shr 40) and 0xFF)
state.memory[p+3] = uint8((y shr 32) and 0xFF)
state.memory[p+4] = uint8((y shr 24) and 0xFF)
state.memory[p+5] = uint8((y shr 16) and 0xFF)
state.memory[p+6] = uint8((y shr 8) and 0xFF)
state.memory[p+7] = uint8(y and 0xFF)
else:
state.stack.add ArcticType(i: 0)
# Math Ops -----------------------------------------------------------
of '+': # IADD
let
y = state.stack.pop.i
x = state.stack.pop.i
state.stack.add ArcticType(i: x + y)
of '-': # ISUB
let
y = state.stack.pop.i
x = state.stack.pop.i
state.stack.add ArcticType(i: x - y)
of '*': # IMUL
let
y = state.stack.pop.i
x = state.stack.pop.i
state.stack.add ArcticType(i: x * y)
of '/': # IDIV
let
y = state.stack.pop.i
x = state.stack.pop.i
state.stack.add ArcticType(i: int(x / y))
of '%': # IMOD
let
y = state.stack.pop.i
x = state.stack.pop.i
state.stack.add ArcticType(i: x.floorMod(y))
of '\\': # IREM
let
y = state.stack.pop.i
x = state.stack.pop.i
state.stack.add ArcticType(i: x mod y)
of '_': # INEG
let x = state.stack.pop.i
state.stack.add ArcticType(i: -x)
of '|': # IABS
let x = state.stack.pop.i
state.stack.add ArcticType(i: x.abs)
of 's': # FADD
let
b = state.stack.pop.d
a = state.stack.pop.d
state.stack.add ArcticType(d: a + b)
of 'm': # FSUB
let
b = state.stack.pop.d
a = state.stack.pop.d
state.stack.add ArcticType(d: a - b)
of 'p': # FMUL
let
b = state.stack.pop.d
a = state.stack.pop.d
state.stack.add ArcticType(d: a * b)
of 'q': # FDIV
let
b = state.stack.pop.d
a = state.stack.pop.d
state.stack.add ArcticType(d: a / b)
of 'f': # FMOD
let
b = state.stack.pop.d
a = state.stack.pop.d
state.stack.add ArcticType(d: floorMod(a, b))
of 'r': # FREM
let
b = state.stack.pop.d
a = state.stack.pop.d
state.stack.add ArcticType(d: a mod b)
of 'j': # FNEG
let
a = state.stack.pop.d
state.stack.add ArcticType(d: -a)
of 'v': # FABS
let
a = state.stack.pop.d
state.stack.add ArcticType(d: a.abs)
of 'V': # BIOR
let
y = state.stack.pop.i
x = state.stack.pop.i
state.stack.add ArcticType(i: x or y)
of '&': # BAND
let
y = state.stack.pop.i
x = state.stack.pop.i
state.stack.add ArcticType(i: x and y)
of '^': # BXOR
let
y = state.stack.pop.i
x = state.stack.pop.i
state.stack.add ArcticType(i: x xor y)
of 'l': # BITC
let
y = state.stack.pop.i
x = state.stack.pop.i
state.stack.add ArcticType(i: x and (not y))
of '!': # BNOT
let x = state.stack.pop.i
state.stack.add ArcticType(i: not x)
of 'u': # USHR
let x = state.stack.pop.i
var i: int64
case op.immediate.kind:
of INTEGER:
i = op.immediate.i
of VARIABLE:
let v = op.immediate.v
i = state.registers[v].i
else:
echo "Unexpected immediate: ", op
assert false
if i > 0:
state.stack.add ArcticType(i: x shr i)
else:
state.stack.add ArcticType(i: x shl (-i))
of '[': # ROTR
let x = state.stack.pop.u
var i: int64
case op.immediate.kind:
of INTEGER:
i = op.immediate.i
of VARIABLE:
let v = op.immediate.v
i = state.registers[v].i
else:
assert false
if i > 0:
state.stack.add ArcticType(u: rotateRightBits(x, i))
else:
state.stack.add ArcticType(u: rotateLeftBits(x, -i))
of ']': # BSHR
let x = state.stack.pop.u
var i: int64
case op.immediate.kind:
of INTEGER:
i = op.immediate.i
of VARIABLE:
let v = op.immediate.v
i = state.registers[v].i
else:
assert false
if i > 0:
state.stack.add ArcticType(u: rotateRightBits(x, i))
else:
state.stack.add ArcticType(u: rotateLeftBits(x, -i))
of '?': # CMPI
let
y = state.stack.pop.i
x = state.stack.pop.i
if x > y:
state.stack.add ArcticType(i: 1)
elif y > x:
state.stack.add ArcticType(i: -1)
else:
state.stack.add ArcticType(i: 0)
of '~': # CMPF
assert op.immediate.kind == INTEGER
let
b = state.stack.pop.d
a = state.stack.pop.d
if almostEqual(a, b, op.immediate.i.Natural):
state.stack.add ArcticType(d: 0.0)
elif a > b:
state.stack.add ArcticType(d: 1.0)
else:
state.stack.add ArcticType(d: -1.0)
of 'U': # CMPU
let
y = state.stack.pop.u
x = state.stack.pop.u
if x > y:
state.stack.add ArcticType(i: 1)
elif y > x:
state.stack.add ArcticType(i: -1)
else:
state.stack.add ArcticType(i: 0)
of 'F': # BMIS
discard # TODO: define BMIS
# Type Conversion Ops --------------------------------------------------
of 'E': # FTOI
let a = state.stack.pop.d
state.stack.add ArcticType(i: a.int64)
of 'O': # ITOC
let x = state.stack.pop.b
state.stack.add ArcticType(i: x.int64)
of 'S': # ITOS
let x = state.stack.pop.s
state.stack.add ArcticType(i: x.int64)
of 'W': # ITOW
let x = state.stack.pop.i
state.stack.add ArcticType(i: x.int64)
of '.': # ITOF
let x = state.stack.pop.i
state.stack.add ArcticType(d: x.float64)
# Stack Ops ------------------------------------------------------------
of 'w': # SDUP
let x = state.stack.pop
state.stack.add x
state.stack.add x
of 'k': # SPOP
discard state.stack.pop
of 't': # SWAP
let
y = state.stack.pop
x = state.stack.pop
state.stack.add y
state.stack.add x
of 'h': # OVER
let
y = state.stack.pop
x = state.stack.pop
state.stack.add x
state.stack.add y
state.stack.add x
of 'e': # SROT
let
z = state.stack.pop
y = state.stack.pop
x = state.stack.pop
state.stack.add y
state.stack.add z
state.stack.add x
of 'P': # PICK
assert op.immediate.kind == INTEGER
let val = state.stack[^op.immediate.i]
state.stack.add val
of 'L': # ROLL
assert op.immediate.kind == INTEGER
let idx: int = state.stack.len - op.immediate.i # TODO: check for OBOEs
state.stack.delete(idx)
of 'T': # PUSH
assert op.immediate.kind == INTEGER
let
idx: int = state.stack.len - op.immediate.i # TODO: check for OBOEs
x = state.stack.pop
state.stack.insert(x, idx)
of '(': # DPTH
state.stack.add ArcticType(i: state.stack.len)
of ')': # PACK
let x = state.stack.pop.i
var p = state.stack.pop.p
for i in countdown(x - 1, 0):
var n = state.stack[^i].u
for _ in 0 .. 8:
state.memory[p] = uint8(n and 0xFF)
n = n shr 8
inc p
# Control Ops ----------------------------------------------------------
of '=': # BEQZ
assert op.immediate.kind == INTEGER
let cond = state.stack.pop.i
if cond == 0:
state.branch op.immediate.i
of '0': # BNEZ
assert op.immediate.kind == INTEGER
let cond = state.stack.pop.i
if cond != 0:
state.branch op.immediate.i
of '<': # BLTZ
assert op.immediate.kind == INTEGER
let cond = state.stack.pop.i
if cond < 0:
state.branch op.immediate.i
of '>': # BGTZ
assert op.immediate.kind == INTEGER
let cond = state.stack.pop.i
if cond > 0:
state.branch op.immediate.i
of '{': # BLEZ
assert op.immediate.kind == INTEGER
let cond = state.stack.pop.i
if cond <= 0:
state.branch op.immediate.i
of '}': # BGEZ
assert op.immediate.kind == INTEGER
let cond = state.stack.pop.i
if cond >= 0:
state.branch op.immediate.i
of 'g': # FINV
let f = state.stack.pop.f
state.stack.add ArcticType(f: state.pc)
state.pc = f
of '@': # CALL
assert op.immediate.kind == SYMBOL
let f = state.symbols[op.immediate.s]
state.stack.add ArcticType(f: state.pc)
state.pc = f
of ',': # JUMP
assert op.immediate.kind == SYMBOL
let f = state.symbols[op.immediate.s]
state.pc = f
of ';': # RETN
let f = state.stack.pop.f
state.pc = f
# Variable Ops ---------------------------------------------------------
of 'A': # PUTA
state.registers[VARIABLE_A] = state.stack.pop
of 'B': # PUTB
state.registers[VARIABLE_B] = state.stack.pop
of 'C': # PUTC
state.registers[VARIABLE_C] = state.stack.pop
of 'I': # PUTI
state.registers[VARIABLE_I] = state.stack.pop
of 'N': # PUTN
state.registers[VARIABLE_N] = state.stack.pop
of 'X': # PUTX
state.registers[VARIABLE_X] = state.stack.pop
of 'Y': # PUTY
state.registers[VARIABLE_Y] = state.stack.pop
of 'Z': # PUTZ
state.registers[VARIABLE_Z] = state.stack.pop
of 'a': # GETA
state.stack.add state.registers[VARIABLE_A]
of 'b': # GETB
state.stack.add state.registers[VARIABLE_B]
of 'c': # GETC
state.stack.add state.registers[VARIABLE_C]
of 'i': # GETI
state.stack.add state.registers[VARIABLE_I]
of 'n': # GETN
state.stack.add state.registers[VARIABLE_N]
of 'x': # GETX
state.stack.add state.registers[VARIABLE_X]
of 'y': # GETY
state.stack.add state.registers[VARIABLE_Y]
of 'z': # GETZ
state.stack.add state.registers[VARIABLE_Z]
# Miscellaneous Ops ----------------------------------------------------
of '$': # VALU
case op.immediate.kind:
of PLAIN:
state.stack.add ArcticType(i: 0)
of VARIABLE:
state.stack.add state.registers[op.immediate.v]
of INTEGER:
state.stack.add ArcticType(i: op.immediate.i)
of NUMBER:
state.stack.add ArcticType(d: op.immediate.n)
of SYMBOL:
state.stack.add ArcticType(p: state.symbols[op.immediate.s])
of '`': # BIFC
case op.immediate.kind:
of PLAIN:
discard
of VARIABLE:
discard
of INTEGER:
state.handle_syscall(op.immediate.i)
of NUMBER:
discard
of SYMBOL:
let callback = builtins[op.immediate.s]
return callback(state)
of ' ': # NOOP
discard
of '\n': # BEAT
discard
else: # Unknown opcode
discard
return CONTINUE

View file

@ -1,116 +0,0 @@
import std/[critbits, strformat, tables]
import memory
type
ArcticPointer* = int64
ArcticType* {.union.} = object
b*: int8
s*: int16
w*: int32
i*: int64
u*: uint64
d*: float64
p*: ArcticPointer
f*: ArcticPointer
ArcticVariableIndex* = enum
VARIABLE_A, VARIABLE_B, VARIABLE_C,
VARIABLE_I, VARIABLE_N,
VARIABLE_X, VARIABLE_Y, VARIABLE_Z
ArcticImmediateKind* = enum
PLAIN, VARIABLE, INTEGER, NUMBER, SYMBOL
ArcticImmediate* = object
case kind*: ArcticImmediateKind
of PLAIN: nil
of VARIABLE: v*: ArcticVariableIndex
of INTEGER: i*: int64
of NUMBER: n*: float64
of SYMBOL: s*: string
ArcticOperation* = object
code*: char
immediate*: ArcticImmediate
bigendian*: bool
ArcticStack* = seq[ArcticType]
ArcticState* = object
memory*: Memory[uint8]
code*: Memory[ArcticOperation]
symbols*: CritBitTree[ArcticPointer] # as name or section _name
stack*: ArcticStack
pc*: ArcticPointer # NOT negative!
registers*: array[ArcticVariableIndex, ArcticType]
dynmem*: Table[ArcticPointer, int] # pointer -> length
ArcticStepResult* = enum
CONTINUE, BREAKPOINT, EXIT, ERROR
ArcticBuiltin* = proc (state: var ArcticState): ArcticStepResult {.nimcall.}
proc `$`*(value: ArcticType): string =
return &"{value.u:016X}"
# return &"(b:0x{value.b:2X}/{value.b}/'{value.b.char}',s:0x{value.s:4X}/{value.s},w:0x{value.w:8X}/{value.w},i:{value.i},u:{value.u},d:{value.d},p/f:{value.u:016X})"
proc `$`*(variable: ArcticVariableIndex): string =
case variable:
of VARIABLE_A: return "A"
of VARIABLE_B: return "B"
of VARIABLE_C: return "C"
of VARIABLE_I: return "I"
of VARIABLE_N: return "N"
of VARIABLE_X: return "X"
of VARIABLE_Y: return "Y"
of VARIABLE_Z: return "Z"
proc `$`*(op: ArcticOperation): string =
result &= op.code
case op.immediate.kind:
of PLAIN: discard
of VARIABLE: result &= $op.immediate.v
of INTEGER: result &= $op.immediate.i
of NUMBER: result &= $op.immediate.n
of SYMBOL: result &= $op.immediate.s
proc `$`*(state: ArcticState): string =
result &= "Registers:\n"
for idx in ArcticVariableIndex:
result &= &" {idx} = {state.registers[idx]}\n"
result &= "Stack (upside-down):\n"
for item in state.stack:
result &= &" {item}\n"
result &= "Code:\n"
for section in state.code.sections:
result &= "\n section "
result &= &"«{section}»"
result &= ":\n"
for (i, m) in state.code.data(section).pairs:
for (label, location) in state.symbols.pairs:
if location == state.code.address(section, i):
result &= &"«:{label}@{location:016x}» "
if state.pc == state.code.address(section, i):
result &= ""
if m.code != ' ':
result &= &"{m} "
result &= "\nData:\n"
for section in state.memory.sections:
result &= "\n section "
result &= &"«{section}»"
result &= ":\n"
for (i, m) in state.memory.data(section).pairs:
for (label, location) in state.symbols.pairs:
if location == state.memory.address(section, i):
result &= &"«:{label}@{location:016x}» "
result &= &"{m:02x}"